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VARIATIONAL PROBLEMS INVOLVING
FUNCTIONAL DIFFERENTIAL EQUATIONS

by

H. T. Banks

‘or optimal control problems involving delayed systems has arisen.
In particular, a number of papers have been written on proﬁlems
involving systems with a time leg in the state variable. More gen-
eral cases where the system has some type of functional dependency
have also been investigated. Existence of optimal solutions for
such problems has been discussed in several works [2], [6], [13].
The purpose of this paper is to obtain necessary conditions (in
the form of an integrated maximum principle) for problems with
quite general nonlinear functional differential systems, These
systems will include as special cases many integro-differential sys-
tems and time lag (variable or constant) systems.

In this paper integrals will be understood to be Lebesgue
or Lebesgue-Stieltjes integrals, Similarly, when speaking of a
measurable function, we shall mean a Lebesgue measurable function
ﬁnless it is specifically stated otherwise. By a solution of a
(functional) differential equation will be meant an absolutely con-
tinuous (A. C.) function which satisfies the equation almost every-
where with respect to Lebesgue measure. Vector matrix notation will
be employed throughout and we shall not distinguish between a vec-
tor and its transpose when it is clear what is meant. The notation

| Al will denote the Euclidean norm of A in whatever space A lies.



In §i, we shall formulate a general extremal problem for
functional differential systems. A theorem concerning necessary
conditions for extremals will be given. The proofs involve a gen-
eralization of the idea of quasiconvex families due to Gamkrelidze
[7]. 1In §2 we shall apply this theorem for extremals to control
problems, obtaining necessary conditions in terms of variations
about the optimal solution. An example of a specific funetional
control problem will be discussed in §3. Finally, in §k4, it will
be shown that the necessary conditions in terms of variations can
be used to derive a general maximum principle involving multipliers

or adjoint variables.

§1.  Extremal Theory. Let t, and oy be fixed in R with

- < ab < to. Let I = [ab,a) be a bounded interval containing

[ob,to] and put I' =I N {t:t > to}. Let ¥ be a fixed open

convex region in R" (possibly all of Rn).. Denote by € = ¢(I,Y)
the space of bounded continuous n-vector funcfions on I into ¥
with uniform topology. That is, % will be considered as a sub-
space of C(I,Rn). For any set X contained in ¥, define AC(I,X)
to be the subset of % consisting of all bounded absolutely con-
tinuous. n-vector functions on I into X. For any non-negative

Ll(I) function K(t), we then define
AC(I,X)K = {x € AC(L,X) : |%(t)]| = K(t) a.e. on TI}.

If k is any positive integer, we define
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7 - {a e Rk, atz0 for i = l,...,k, and 2511 = 1}.

Denote by ¥ a family of n-vector functionals F(x(-),t) where
F: £xIt »>R'. By the notation P(x(+),t), we shall mean that

for each fixed t in I,
n
F(-,t) & C([ob,t],E?) -R,

so that F(x(-),t) may depend on any or all of the values x(T),
o RERY If, for each t ¢ I', F has a Fréchet differential
dF with respect to x, then dF(x(-),t; *] is a bounded linear map

from C([ay,t], R") into R". We shall then write [ldF[x(-),t; *]

| = n(t)
to mean |dF[x(-),t;v]| = m(t)HWHt for each V € C([ab,t],Rn) and

t € I*, where

Wl = supll¥(s)] = s € [o,t]).

Note: In the discussions below, we shall not always distinéuish
between %= ¢(I1,9) and C([ao,t],g?). For example, instead of
saying that for each t, F(x(*),t) is ¢t w.r.t. x in C([ob,t],f?),
we shall say simply that F 1is Cl in x on ¥. It will be

clear what is meant. In fact, given any continuous x defiﬂed on
[Ob’T] (contained in I) into ¥, then x may be considered as

an element of ¥ by the convention x(t) = x(t) for + 2 7. Con-

versely, any x in ¥ is also in c([ob,t],g?) for each t ¢ I',

We then make the following definition:




1. EBach F(x(-),t) in & is ¢l in x for fixed t e I?
and measurable on I' for fixed x ¢ %.
2. Given any F ¢ ¥ and any compact convex X contained in

Y, there exists an m ¢ Ll(I*) (m depending on X,F) such that

IF(X( ');t)‘ s m(t)

larCx(-),t; < = m(t)

for all t e I' and x € AC(I,X), where dF is the Fréchet dif-
ferential éf F w.r.t. x.

3. Por every compact convex X contained in fﬁ; non-nega-
tive K in Ll(I)’ finite collection Fl,...,Fk in %, and € >0,
there exists for each « ¢ Pk .an F_ in’ Z (depending on X,K,

(0
the Fi; and €) satisfying

|7 (x(*),t)] = Efm,(¢)

"dFa[X(°):t§ °]

for each « ¢ Pk, t ¢ I', and x € AC(I,X), (where the m, are the
Ll(I') functions described in 2. above depending on X and Fi),

so that

il

G(x(*),b,0) = T’ F; (x(+),8) - F_(x(*),%)

satisfies?



31) - fa(x(+),5,0)] 5 25, (t)
lactx(+),t 05 <] = 22, (¢)

for all x ¢ AC(I,X), o € Pk, and t e I'.
5(11) 1£.2 a(x(+) t,a)at] <e
1

for all « € Pk, ['rl,r2] CI', and x € AC(I,X)K.

3(iii) If {O‘i}:=1 is a sequence in P*  such that 0y -a € Pk,
then {G(x(-),t,oz:.L)}olo converges in measure on I' to G(x(-),t,a)
for each x € AC(I,X)y.

Next let & be the class of A. C. n-vector functions on
[ost,)  into Y. That is, ¢ = {9 : ¢ € AC([a,t,), ¥)}. For

Fe % and ¢ € ¢, we shall consider solutions to

~

%(t) = F(x(*),t) t> t,
(1.1)
. x(t) = o(t) t ¢ [ao,to].
It z(t), oy £t £ 7,, is a solution to (1.1) for (F,p) € & x 9,

we define the 2n+1 vector g, = (z(fco);z(Tl),Tl). Let Q be the

set of all such g, for solutions to (1.1) for (F,p) € F x o.
Let A4 be a given ¢' manifold in R2n+1 with boundary

M =03/, For qe #, let /T(q) be the tangent half-plane to

A at aq and let _,(T(q) be the tangent plane to A at q.

Definition: A solution z(t), o, £t =1, to (1.1) corresponding

to (F,9) € F x @ is called an F, 4,0 extremal if




(1) q, ¢ A4
(ii) there is a neighborhood V of q, such that Vv.NnQnN _# cA.
Let M be an aribtrary but fixed positive function in
_Ll(cxo,to). Define ®®(M) to be the set of A.C. n-vector functions
& on [ay,t,] into R satisfying |&h(t)]
[ao,to].

| Given an %, 4,0 extremal 2(t), %

A

M(t) a.e. on

1A

t = tl’ correspond-
ing to (f,@) in % X ®, we shall denote by OF the elements in
[j?]-ﬁ where [ %] 1is the closed convex hull of % . That is,

OF = ZJ{alFi-f', where « € Pk, k arbitrary. For ©OF in [g]-f‘
and & € 80(M), let Bx denote the solution to

8x(t)

dF[R(-),t;8x] + BF(R(-),t) on [tgst,]
| (1.2)
dx(t)

&(t) on [ozo,to].

The existence of a solution of (1.2) is guaranteed by previous re-
sults of the author (see Theorems 1 and 2 in [1]).

With the above definitions in mind, we then define the

set ¢ contained in R-L by H = {(&p(to), ox(t,) + Stﬁ(%(-),tl),ﬁt) :

1

& e 50(M), 8 € R-, 8x is the solution to (1.2) for B&F in []-F

and & € d3d(M)}.

Theorem 1: Suppose & is absolutely quasiconvex. Let %(t),

&, £t =t,, bean Z, M4,® extremal corresponding to (ﬁ,@) €

& X &. Suppose t., 1is a regular point for ﬁ(ﬁ(-),t). Then there

1

exists a non-zero 2n+l dimensional vector ¢ such that



(i) ¢ 4is orthogonal to J(T(q&)
(ii) ¢-wz 0 for all 2n4l vectors w such that weqy €
e )
(%)

(iii) ¢°p £ 0 for all pe .

Proof: Let M and 8(M) be as defined previously. Let X(t),

oy £t =%y, be the 5’,./V,<I>. extremal corresponding to ('F\‘,cs) €
% x @, That is,

&(t) [t

i

txj
~

fald
—~~
\" '
-

ct
~

ortal
(1.3)
2(+)

fn

(t) [, t0) -

ILet X Dbe a fixed compact convex subset of Y chosen so that each
2(t), o, =t £ t;, is an interior point of X. Let ©OF = %aiFi-/f‘

represent an arﬁitrary element of [?]—f‘. Let i, m, , i=1,...,k
be the Ll(I') functions in 2. of the definition of absolute quasi-

convexity corresponding to @, Fi’ i=1,...,k, respectively and X.

Define an Ll(I) function X by

(}(fﬁ(t) . Z}{mi(t)) tel

K(t) =
2,|$(t)| + M(t) t e [og,t].

Since % is A.Q., one can use the definition to show that
given any €, 0 £ & £ 1, there exists a function Gs(x(°),t) de-

fined on ¥ X I' into R© such thats

(1.L4) (F + €OF + G) € F



6 (x(+), 8| = 2(A(t) + Zim (+))
(1.5)

laggfx(), b5 + 1 = 20A(t) + Tim, (+))
for all x € AC(I,X) and t € I'

(1.6) 1.2 y(x(+), 02t <2
A 1

for every T5T, in I' and x € AC(I,X)K.

If 2z(t) is any solution to

z(t)

z(t)

F(z(*),t) + €80(z(+),t) + Gyla(+),t) & >%

9(t) +e8p(t) on [op,t,]

0

where & € 53(M), then from the definition of K we get |2(t)]

A

K(t)
so that the inequality in (1.6) holds for such solutions z over
intervals on which they exiét. Note that if ®F is not fixed, but

is allowed to range over [®F,,...,8F ], then K can be chosen in-

dependently of the particular &F in this set. For then there exists

A

Fl,...,F, such that OF, = Dadr,-F, 3 = 1,...,v, so that K will

depend on Fl’F2:°}-,Fk’% but not a particular &F € [SFl,...,GF 1.

We next consider "perturbations" of the system (1.3). For

arbitrary Bt ¢ RS, &p € 00(M), OF ¢ [%)-F, and 0 S€ £ 1, we

14

consider the system

2(t,€)

4

%(Z(',C),t) + €8F(2(°:8))t) + GE(Z(°,€),t) t > to

(197)
z(t,€)

"

(t) + eqp(t) on [ay,tyle




Lemmas similar to Lemmas 4.2 and 4.3 in [1] can be proved for this
system (the proofs of Lemmas 4.2 and L.3 are changed only slightly).
One then has that for € 30 sufficiently small the solution 2z(t,€)

to (1.7) exists on [to,tl + el&tl] where it has the form
(1.8) z2(t,8) = &(t) + edx(t) + o€)

with Ox satiszing the linear variational system

(19 8x(t) = aF[R(=),t38x] + OF(R(*),t) t ¢ [tyt,4€} 8t] ]
1.9

ox(t) = &p(t) t e [ob,to].

- TLet N oy = ,Ji(qﬁ), My = J{&(QQ), and A -qy =
{w e R2n+l 8 W= w*-qﬁ, where w¥ € Jii}o Then proceeding next

exactly as in the proof of Theorem 5 in [1] (the proofs of Lemmas
L. and 4.5 in [1] are carried out with only slight modifications)
one gets that the convex sets 52' and _/?T-qﬁ can be separated
by a hyperplane & through the origin in R2n+l. Choosing € to

be a non-zero normal to & such that
(l-lO) ) »c"p é O _S_ §°W

for all pe .S and w €,2’T-q%, we have that (ii) and (iii) of
Theorem 1 hold. It is easy to show that (i) also holds since

_/ZT-QQ is a plane through the origin which is contained in ~/;T'q§°
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§2. Applications to Control Problems. Let us denote the closure

of AC(I,X)K in the wniform topology by c AC(I,X)K. We then can

prox}e the following lemma.

Lemma 2.13 Iet X be any compact convex subset of ¥ where
Y CR% Let K be a non-negative Ll( I) function, where I is
a finite interval. Then % =cl AC(I,X)K is compact convex and

Z C Ac(I1,X).

Proof: Let 2z € %. Then there is a sequence {yk} in AC(I,X)K

such that ¥ converges to z wuniformly on I. For any T,,T

1’2

in I we have

T ’1'2

2., .

1

for every k. TLetting k — » we obtain

2 K(t)at ,

i
S

(2.1) lZ(Tl)‘Z(Tg)‘

which shows that any z in % is A.C. Furthermore, since X
vis compact, any such z 1is a mapping on I into X. Thus,
% C AC(I,X). From (2.1) we also can conclude that there is some
constant B such that | z|| = B. for all z in %. That is, ¥
is a bounded subset of o(1,RY.

Given any €& >0, let 'El,.“,EN be a partition of I

with meaS(Ei) < 8, where 8 is that corresponding to € for the
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A.C. of [K(t)dt. Let {si}li_l be points chosen so that S5 ¢ E,.
hat

Again using (2.1) we have that 2z ¢ % implies

|a(s)-2(s;)| = [/ K(t)at| <e

for each s ¢ Eio Thus we get

sup sup |z(s)-z(si)| <€,
zZeY s ¢ Ei

It then follows that % is a conditionally compact.subset of
c(I,R"). (See Theorem IV.6.5 in [5].) But % is closed, hence
compact. The convexity of % is easily seen since % is the clo-
sure of the convex set AC(I,X)K,
We next state a lemma that will be needed to apply the
previous theory to control problems. The proof of this lemma will

not be given here since it is essentially the same as the proof

due to Gamkrelidze of Lemma 4.1 in [7].

TLemma 2.2 Let X oe a compact convex subset of ¥, K a non;
negative Ll(I) function, and € > 0. Let Fj(x(c),t), j =
1,00.,k, be mappings from AC(I,X) X I' into R" that are measur-
able in t for fixed x and Cl in x for fixed t. Assume
there exists an m(t) in L (I') such that IFj(X(’),t)I < m(t),
”dFJ[X(°):t3 -1l

l,000,ke Let %/, a subset of AC(I,X), be the compact convex

WA

m(t) for all x e AC(I,X) and t e I', j =

set defined by % = cl AC(I,X)K. Let pj(t), J = 1,000,k, be

3



given non-negative real-valued measurable functions on I' satis-

fying Zipj(t) =1 a.e. on I'. Then it is possible to subdivide

I' into sufficiently small subintervals El, i=1%1, %2,,,., and
to assign to each Ei one of the functions Fi’°°°’Fk’ which we
shall denote by FE , So that the function F(x(+),t) defined by
F(x(*),t) = Fg (x(),t) for t ¢ Ej,
™ : i
i = il, te,ooo
and
x € AC(I,X)

satisfies
fi {zg;lpjmrﬂj(x(°>,t>-F<§<<-),t)}dtl <e

for every 71T in I' and x ¢ %.
We are now ready to consider the following optimal con-
trol problems

Minimize J[5,u,§,tl] = ftl'fo(i('),u(t),t)dt over
0]
n-1

TxaxgrY X I' subject to
(1) ®t) = TR -),u(5),b) t e [ty,5))
%(t) = 5(t) t ¢ oy, ]

(11) (R(t,),%(t,),8) € 7.

The following assumptions and definitions are made:

R \ . . n-
% 1is a fixed open convex region in R

n-1 vector, f = ) (p ... fn_l)
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defined on C(I, @) X % X I', where % CR°. Each f is as-
sumed C' in X and Borel measurable in u,t. & and Q are de-
fined by @ = AC([oco,tO], Z)Y and Q = {u: u is measurable on
‘I' and u(t) € U(t) for t e I'}, where U is a given mapping

of I' into subsets of % . Z 1is a given C:L manifold in R2n-l

of dimension less than 2n-1 satisfying 9 C & x @ Xx1I'.
We also assume that given X compact, XC Q , and ueQ,

there exists an m in Ll(I') such that

| £Gx(-),u(t),t)] = m(t)

"df[;( '),u(t),t; -]

| < m(t)

for each t ¢ I' and X € AC(I,X), where df is the Fréchet dif-
ferential of f w.r.t. X.
Suppose that (5*,u*,§*¢t9i) is a solution to the above

problem. Put

where
Ox(t) = fz £2(34(*),w(0),0)a0 b € [, 1]
0 v

xo*(t) =0 t e [oco

’to]c
Now define f£(x(-),u,t) = £f(x(*),u,t) where x = (xo,3(-) e ¢(1,9)
with & = T x & . (That is, hereafter we shall write f as

a function of x even though it does not really depend on xo.)
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Put F = (F(x(+),t) : B(x(+),t) = £(x(-),u(t),t) for ue ) and
¢ ={p = (¢0,5) :P e and ¢ e AC([ab,to],Rl)].

Let yp,go,T represent scalars and 7y,f represent n-1
vectors. Then dgfine ./V'CZR2n+l to be all (yp,y)go,g,T) with

(v,8,T) near (§¥(to),§¥(ti),ti) satisfying

P =0
§0 s xo*(ti) .

Define _# to be the above set with the last inequality replaced by
equality. Then _# is a C1 manifold with boundary _# .

With the above definitions in mind one can prove (the
proof is exactly the same as the proof of Lemma 5.1 in [1]) that
x* is an %, #,0 extremal. Furthermore, the class ¥ defined
above is absolutely quasiconvex. The proof that % 1is A.Q. uses
Lemma 2.2 and the arguments are similar to those for the proof of
é similar result in [2].

Thus, we can apply Theorem 1 to the control problem in
theAabove formulation. Let &b = 3®(M) = (& ¢ AC([Qb,tO],Rn):
| &(t)] = M(t) a.e. on [0st,1}  Dbe as defined in §1. For
($¥,u*,§*,t§) optimal, and & € 8, o in Pk, {ui]i in Q, we

denote by 8x the solution to

8x(t) = af{xx(+),ux(t),b50x] + oo £(x(-),u, (6),6)-£(xx(*) ,wr(t), t)
(2'2) on (to)t*1

1!
5X(t) = Eﬂ)(t) on [aoyto]
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where x¥* = (xo*,i*). Define &% to be the set of all such solu-
tions for & in 089, {ui}i any finite collection in Q, and

a € fk, k arbitrary positive integer. Then we have:

Theorem 2: Let (5¥,p*,§¥,ti) be optimal. Suppose t¥ is a

1
regular point for f(x*(*),u*(t), t). Then there exists a non-zero
20+l veetor = (by,by,s;) = (bo, o’ ..,bg-l,bg,bi,...,bg'l,al) =
(700,b0,b0 bl,al) such that
» (1) The 2n-1 vector (bo, 17 l) is orthogonal to 7 at
(Fr(t,) FH (1), £5)
(2) v <0

1
(3) by £Gex(+),ux(4%),t3) + a; = 0
(%) bovﬁop(to) + bl°'c‘>x(t91f) £ 0 for arbitrary & in 00, 8x

in 8% (& corresponding to &).

Proof: Theorem 2 follows almost immediately from Theorem 1, State-

ments (3) and (L) are a direct consequence of (iii) in Theorem 1.
Statement (2) follows from (ii) of Theorem 1 since the 2n+1 vee-
tor w = (On,—l,On_l,O) is such that qp + w e ¢4é(q§) for the

above define§ ,4/.. Finally, if (yi,gT,TT) is any tangent vector

to 9 at (E*(to),§¥(t*) t¥), then the vector (0’7&,0 Eps Tp )y is
tangent to _# (as defined above) at q o = (O X (t ),x *(t¥ ),x*(t*),tl).

Hence condition (1) of Theorem 2 follows from (i) of Theorem 1.

Remarks. First let us note that the results of Theorem 2 imply

that b, # 0. TFor if b, were zero, using (3) and (4) would give
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a) =0 and by =0 and hence §.= (Bo,bl,él) = 0, a contradic-
tion! »

We also point out that if> 3 were some given convex class
-of A.C., initial functioﬁs for the control problem, one could
.still prove a result similar to Theorem 2, in the statement and
proof of Theorem 1 then, ¢ would be some specified convex class.
The set &&(M) would be replaced by [@]-& and for & in
(&,..-,%,], K(t) would be chosen so that K(t) 2 |q§(t)| +
ngéi(t)l) where Emj = Z¥=1gpawi-$, j=1...,8. In$2, ¢ would
be defined as before in terms of the given class & for the con-
trol problem. Then we would have 8 = [0]-9%, where o¢* = (0,9%),

in the statement of Theorem 2. It should be noted however that the

result about bl # 0 mentioned above does not hold for this problem.

§3. The‘COnfrol Problem for a Specific Functional System. - Let

I,I',EﬁQQ,é?,j7} and 0 be as defined previously. In this section

. 0 —=
we shall consider a control problem where f = (£ ,f) has the form

(3.1) £(%(+),u(t),t) = f;oa(s)g('i(s),u(t),t)ds

where a 1is a scalar function. Using the usual arguments em-
Ployed in measure theory and analysis, one can prove the following

lemma without difficulty.

Lemma 3,13 Let a € Ll(I). Let g = (gp;é) be defined on
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In particular, a number of papers have been written on problers
involving systems with a time lég in the state variable. More gori-
eral cases where the system has some type of functional dependercy
have also.been investigated. Existence of optimal solutions for
such problems has been discussed in several works [2], [6], [13].
The purpose of this paper is to obtain necessary conditions (in

the form of an integrated maximum principle) for problems with
guite ggneral nonlinear functional differential systems, These
systems will include as specéal cases many integro-differential sys-
tems and time lag (variable or constant) systems.

In this paper integrals will be understood to be Lebesgus

or Lebesgue-Stieltjes integrals. Similarly, when speaking of a
megsurable function, we shall mean a Lebesgue measurable functioun
ﬁnless it 1s specifically stated otherwise. By a solution of a
'(functional) differential equation will be meant an absolutely con-
tinuous (A. C.) function which satisfies the equation almost evory-
where with respect to Lebesgue measure, Vector metrix notation will
be employed throughout and ;e shall not distinguish between a vec-

" tor and its transpose 'when it is clear what is meant. The notation

|A] will denote the Euclidean norm of A in whatever space A lics.
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G X Yx I, ¢t in X for fixed (w,t) in Z X I’ and Borel
measurable in (u,t) for fixed X in @ . Given any compact

X contained iﬁ g'; and u € Q, assume there exists a finite
integrable function m on I' such that | g(x,u(t),t)]| <m(t),

|g§-(§,u(t),£)| <m(t) for each X € X and t € I'. Define f by

£(%(+),u(t),t) = f@g(s)g(%‘(s),um,t)ds

for x €C(I, ), ucQ, and t e I'. Then we have:
(i) f is measurable in t on I' for fixed x ¢ C(I, @)
and u € Q
(ii) For fixed t e I' and ueQ, £ is ¢ in ¥ on
"C(I, ¢ ). That is, for fixed t and wu, the Fréchet differential

of f w.r.t. X exists and is continuous in X. The differential

is given by

affx(-),u(t),t;V] = f;oa( s) g;(‘}?( s),u(t),t)¥(s)ds

(iii) Given u € @ and a compact X contained in & , there

is an m in Ll(I') (namely, m(t) = m(t)fzo| a(s)| ds) such that

(R yu(t), 8] = E(e)

lagr=(-),u(t), 65 1 < &(t)

for all t € I' and x € AC(LX).
~As in the previous section, by x we shall mean the n-
vector function x = (xo,'f) vhere O e o( I,Rl), xeC(I,g) (or

x € ¢(I,¥) with ¥ = r! x Z ). Then (3.1) may be written
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t
f(x(-),u(t),t) = fa a(s)e(x(s),u(t),t)ds
0
and f has Fréchet differential w.r.t. x given by

affx(-),u(t),t5¥] = f;ba<s>gx<x<s>,u<t>,t>w<s)ds

where

and V e C(I,Rn). With this notation adopted, we state and prove

the next lemmas.

Lemma 3.2: Let a and g = (go,ED be as described in Lemma 3.1.
~Let x € C(I,¥9) and u measurable on I' into % be given.

Fix 't in I'. Then the n X n matrix system

Nt,t) = E
(3.2)

3 t
SHo,t) + [on(s,t)a(0)e (x(0),u(s),s)ds = 0 t S0 st
has a unique solution on [to,t].

Proof: For fixed t,x, and u, the above system can be replaced by

the equivalent system

y(t) = E
(3.3)

t
y' (o) + fcy(s)a(c)h(c,s)ds =0 o € [ty,t]
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4. The function h(o,s) is continuous in ¢ for

1
where 35

each s, measurable in s for each o, and satisfies |h(o,s)| =

m(s) for each o, where m is some finite-valued Ll(I') fune-

tion,
Consider next the system
a(r)-fgz(q)z(w)’ﬁ(r,n)dn =0 0575 tt
(3.4
, z2(0) = E
where ° = g% and a(T) = a(t-1), h(T,q) = h(t-t,t-n). Using

the hypotheses on a and h, it is not difficult to show that sys-~
tem (3.4) satisfies the hypotheses of Theorems 1 and 2 in [1]. It
follows that system (3.4) has a unique solution z on [O,t-to].

Then define
(3.5) ' y(€) = z(t-¢) ty 28 =t
The function y is A.C. on [to,t] and satisfies

a T ~, _ < <t
g (t-7) - [oy(t-n)a(t)h(t,n)dn =0 o0 =T =t t,

y(t) = E.

Making the change of variables s = t-7 in the above integral,

one obtains

A

%%V(t"T) + fz-Ty(S)g(T)g(T,t-s)ds =0 0STE t-t

y(t) = E.
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Letting o = t-t 1in this system gives

n
o
ct
A
Q
IA
ct+

-y (o) + f:y(s)g(t-o)g(t-o,t—s)ds

Y(t) = E,

which is equivalent to (3.3).

Thus the function y defined by (3.5) is a solution to
(3.3). By reversing the above procedures, one sees that any éolu-
tion of (3.3) will transform into a solution of (3.4), Since (3.4)
has a unique solution, we have that y defined in (3.5) is the

unique solution of (3.3).

Lemma 3.%: Let a and g = (gp,éb be as described in Lemma 3.1,

1

u measurable on I' into % are given., For each t, t

Let t, in I' be fixed. Assume that x in c([ao,tl],g) and

s
0 <t Sty

let A(o,t) be the matrix solution to

Nt,t) = B
(5.6)

9. t
Béko,t) + fcf(s,t)a(c)gx(x(q),u(s),s)ds =0 t)s03t.

Let C(t) be an n-vector function in Ll(to,tl) and @ €

AC([ab,tO],Rn). Then the n-vector solution z +to

2(o) = fgoa(s)gx(x(s),u(o),o)z(s)ds +C(0) o € [t,,t,]
(3.7) | |

z(o) = (o) G € [ao,to]

exists on [to,tl] and for t >t is given by

0]
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(3.8) (%) = Nt,t)o(t,) + fzoA(s,t)c(s)ds

Y t){ftO ( |
+ 5,5 » ao? 0)g (x(o),u(s),s)p(c)do}ds.

Proofs Existence follows from Theoremsl and 2 in [1] and the as-

sumptions on a and g, If Ao,t) is the solution to (3.6),
we multiply the first equation in (3.7) by A and integrate over

g from to to t and obtain

ftoz«a,t)é(a)do - ftoA(c,t)dofgba(s)gx(x(s),u(o?,c)z(s)ds
+ [Y Not)c(o)do.
0
Integration by parts (A(o,t) is A.C. in o) gives
2() = Nt t)o(ty) + f:oggé(c,t)z(c)dd
+ [T No,t)e(o)ds
0
. fzol(o,t)dcfgba(s)gx(x(s),u(cxp)z(s)ds
= z(to,t)@(to) + fzof(o,t)c(a)da

+ fﬁon<c,t>aofzg a(s)e, (x(s),u(0),0)0(s)ds
s ftogg(a,t)z(a)do ; ff‘;OA(c,t)donga(s)gx(x( s),u(0),0)z(s)ds.
Considering the last of these integrals (for t fixed) we have
Fi (3 Ko, 0)a(a) e, (a(2),5(a),0)al as)as

- f’go(f’goh(a,s)ds)do
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where

ﬁ(c,t)a(s)gx(x(s),u(o),o)z(s) for s=¢
h(o,s) = -
0 for s>0o .

It is not hard to see that h 1is absolutely integrable on [to,t] X
[to,t]. Hence, by Fubini's theorem, we msy interchange the order

of integration in the above integral. This gives
fio s plo,2)asao = [ (f; u(o,s)aa)as
- fﬁo(fzz«o,t>a<s>gx<x<s),u<a>,c)z<s>do>as
= Iy (g M3, 0a(0)e,(x(0),0(s), 5)x(0)as)ac
We thus obtain
2(t) = Nty,t)0(t,) + f,‘;OA(o,t)c(c)dc
! fgof<o,t>aof22a(s)gx<x<s),u<c>,c)@(s)ds
: fﬁota' 5,8) + [2A(s,t)a(0)e,(x(0),u(s), s)as)a(o)do.

But the last term vanishes since A satisfies (3.6).

With these preliminary lemmas in mind,bwe now consider
the control problem with f = (fo,?) as defined by (3.1) where
a and g satisfy the conditions in Lemma 3,1. The results of
section 2 (in particular, Theorem 2) are valid for this problem.
We shall show that these give a maximum principle in integral

form for the control problem under consideration.
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Using Lemma 3.3 with O(t) = Zha™£(xx( ), (t),t) -
fx*(+),u*(t),t), ae Pk, u; €Q, one finds that the elements of

8% have the form for t > to
(3.9)  &x(t) = At,t)op(t,)
: fﬁOMs,mz“{aif(x*( ), u;(8),8)-£(x%( ), ux(s) ,s) ) as

t
+ 7 As,8)(f Qa(0)e (x%(0) ,ux(s) ) 8p(0)do}ds
o 0

where & ¢ & and A satisfies (3.6) with x = x* and u = u*.

Define the n-vector function (o) = (Wo(c),iKc)) by

(3.10) V(o) = bln(c,tele) t, S0 = b,
where bl is as in Theorem 2., Then V satisfies
\.Il(t‘)]‘:) = bl
il
Wo) + [ ¥(s)a(0)g,(x*(0) ,ux(s),5)ds = 0 t S o = tx.

Note that &O(c) =0 since g has zeros in its first column.

Hence WO = bg £ 0 by condition (2) of Theorem 2, Furthermore,

not only is w(ti) = b, non-zero, but the continuity of ¥ im-
plies V(t) is non-zero on some interval (B,ti].
Using (3.9) and (3.10), statement (4) of Theorem 2 may

be written



(b, + ¥(t))-8(t,)

t* - |
(3.11) . ftgw(s){zﬁqlf(x*(.),ui(s),s) - £(x*(-),u*(s),s)}ds
t{ tO
+ ftoW(S){faba(a)gx(X*(c),u*(S),S)&P(G)dc}ds 0

for all & ¢ 3, o = (al,...,ak) and {ui}i in P° and 9, k
arbitrary. Since & and the ui's are independent of each other,

this gives

t¥ ,
%yww%aﬂavwbm@ﬁmo“

(3.12) o ,
éuywu%a@aﬂwxwwn@mas

for all u € § and

(g + ¥(ty)] - (L)

(3.13) t*

t
+ ft w(s)fQ?a(o)gx(x*(o),u*(s),s)&m(c)do ds £ 0
0 0

for arbitrary & in O0.
Condition (3.12) is a maximum principle in integral form.
Condition (3.13) gives
| 1 %
(3.154) ft w(s)dsfa a(c)gx(x*(c),u*(s),s)ap(o)dc £0
0 0
for arbitrary & in ® with Sm(to) = 0. Since the integrand
in (3.14) is absolutely integrable, we can interchange the order

of integration and obtain

to ti
(3.15) faba(c){ftOW(s)ek(x*(c),u*(s),s)ds}a@(o)do €0
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for arbitrary & in &3 with &p(to) = 0.
t¥

Since a(g)f 1

%

we may apply Lemma 2 of [1] to (3.15). This gives

W(s)gx(x*(o),u*(s),s)ds is in Ll(ab,to),

i
o(0) ], ¥(3)g,((6),u%(5),8)as = 0

for almost every o in [ab,to]. Because of the form of g , this
x

may be written

g
(3.16) ftOW(S)a(d)gE(X*(c),u*(s),s)ds =0

for almost every ¢ in [ao,to]. Combining (3.16) and (3.13) one

gets
(by + W(t,)}-E(t,) 5 O
for arbitrary & in &b, This gives
(3.17) by = -¥t,) -
From (3) of Theorem 2 we have
ty ‘ -
(3.18) a, = _W(ti)-fOba(s)g(x*(s),u*(ti),ti)ds.

If we combine (3.10), (3.17), (3.18) and (1) of Theorem 2, we get

that the 2n-1 vector

S o
(-T(t,), T tei),-wtep-f%a(s)g(i*(sbu*(ti),tpds)

is orthogonal to 9 at (§¥(to);§*(ti),ti).
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We have thus proved the following theorem.

Theorem 3: Let (54,u*,§¥,ti) be optimal for the control problem

with system equations givén by (3.1). Assume that ti is a regu-
lar point of f(x*(+),u*(t),t). Then there exists a non-trivial
A. C. n-vector function VY(t) = (Wo(t),$(t)) defined on [to,ti]
satisfying:
.y 40 ’
(i) Vv~ = constant = 0, (%) £0
Wt) + [, ¥(s)a(t)e(x*(t),ux(s),s)ds =0 t, St st

t*
(ii) ft;\v(s)fzoa(c)g(;*(o),u(s),s)ac ds
< ftiw(s)fs a(c)g(?*(o),u*(s),s)dc ds
Y% %
for all u € Q.

¥ o
(iii) ftiw(s)a(c)g§(§¥(o),u*(s),s)ds = 0 for almost every o
in [ob,to].

(iv) The 2n-1 vector

(-T(t) ,T(3),-¥(£2) . £X(£%))

is orthogonal to 7 at (E*(to),§¥(ti),ti).

§h."Necessary‘Conditith'for:General Functional Systems. We now

‘consider the control problem with system equations involving a

general functional f = (fO,E) = f(x(+),u,t). We assume that f
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has the general properties assumed in section 2. ILet X ¢ C(I,_é-)
and uw € Q be fixed. Since for each t e I' af{x(-),u(t),t; -]

is a bounded linear operator on C([o:o,t],Rn'l)

into Rn, we
have by the Riesz theorem that there exists an n X (n-1) matrix

function T7(t,s) such that

arfx(-),u(t),t;v] = f;odsﬁ(t,s)'ll?(s)

for all V e c([ao,t],Rn‘l)

and t e I'.

Defining NBV[ozo,t] as all g satisfying (i) g is of
bounded variation on [aj,t] (ii) g(t) = 0 (4iii) g is continu-
ous from the right, we may then assert the existence of a unique
7(t,*) in NBV[),t] such that the above equation holds.

Let V:'::oz TN(t,s) denote the variation of T7(t,-) on

0

[ao,t]. Then a further consequence of the Riesz theorem is that

there exists a constant D > 0 such that

t
s =Ot0

Vo, (t,s) = Dllarfx(-),u(t),t; -1 .

Thus we have
t — ~
\V4 M(t,s) £ Dm(t) = m(t)
s=x
0]
where m ¢ Ll(I').
In this section we shall adopt the notation previously used

in writing
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£(x( '),u,‘t) = f('i( '))u:t)

where x = (xo,i) with ® e C(I,Rl) and X e ¢(I,¥), or

x e ¢(1,¥9) with ¢ = ®Y x & . Then we may write
(1) attx(+),u(t), ;] = fgoasnu,sms)

for Ve C(I,Rn), where n(t,s) is the n X n matrix function

0

. T(t,s)

Qe

The integral in (L.1l) is the Lebesgue-Stieltjes integral.
In the following discussions we shall assume that n(t,s) has

been extended as follows:

n(t,s)

n(t,s)

n(t,t) =0 for s>t

[

n(t,ab) for s <oy,

This may be done without changing (4.1). Furthermore, in what
‘follows we shall be considering af[x(-),u(t),t; «] for x and u
fixed unless otherwise indicated. Hence we shall write dfft; -]
for aff{x(-),u(t),t; -] with the understanding that we are con-
sidering df for some fixed x and u.

Using (4.1) and the fact that dfft;¥] is measurable in
t on I' for each V € C(I,Rn), it is not hard to prove that

1(t,s) is measurable in t for each fixed s. Furthermore, for
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each o in [ao,t],

ln(t,(’}l = ‘n(t)t)'ﬂ(t)d)i

In(t,t)-n(t,0)] + |n(s,0)-n(t,0.)]

HA

A

v;%mn@saux

That is, one can prove the following lemma.

Lemma 4.1: For each fixed s in I, the function 7¢(.,s) is

measurable on I'. Furthermore, |n(t,0)| = m(t) uniformly in o

on [ab,t] (and hence on I), where m is the Ll(I') function
satistying /¥ n(t,s) = m(t).
S=(1O
We next prove a theorem concerning the existence of solu-
tions to an integral equation. The multiplier (or adjoint) equa-
tion for our control problem will be a special case of this equa-

tion.

Theorem 4: Let the n X n matrix N(o,t) be measurable in ¢
on F' satisfying |N(o,t)| $ r(o) for every t in [0,T],
where [0,T] C_#' and r eLl(]'). Let N(o,t) be BV[0,T]
as a function of t, satisfying \¢’£=ON(o,t) £ r(g) for each o
in F7'. Let F(z,t) be defined on R™ X [0,T] into Rn, con-
tinuous in 2z for each t, of bounded variation in t with
\/$=OF(z,t) £ n(z), where h 1is a bounded measurable function on
R-. Furthermore, suppose there exists a bounded measurable y{t)

on [0,T] such that |F(z,t)] = |z|(t). Let & be a constant
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n-vector. Then the system

z(0) = ¢
(k.2)

2(t) + ng(o,t)F(z(c),t)do -t te (0,1
has a solution that is in BV[0,T].

Proof: For k = 1,2,..., we define the sequence of functions

.§ t € [0, T/k]

E-Ig-T/kN(c,f)F(zk(c),t)dq t e (T/k,T].

Then using the hypotheses on F and N, it is not difficult to
show that {zk) is uniformly bounded on [0,T] and, in fact,
\v'z_ozk(t) is uniformly bounded. It follows from a well-known
theorem of Helly that (zk} has a convergent subsequence, which we
again call {zk], such that zk(t) - 2z(t) for every t in (0,T]
and the limit function =z is in BV[0,T].

We show that 2z 1is a solution to (4.2). Clearly
z(0) = &. Hence fix t in (0,T]. Then for k sufficiently

large, we have t in (T/k,T] and thus
(h3) 2 (8) = 6L (0, 8)R(7, (0) , t) a0

The integral may be written
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15 (0, 1)8(2, (o) )0
= ng(o,t)F(zk(o),t)dc - IE_T/kN(c,t)F(zk(c),t)dc.
The second of these integrals approaches zero as k —» = since
t t ‘
|ft_T/kN(o,t)F(zk(c),t)dcl s ft_T/kr(c)Qy(t)do

where Q 1is a bound for {zk}. From the continuity of F in =z

and the fact that lN(a,t)F(zk(o),t)I s r(0)Qy(t), we have
[EN(0,t)F(2, (0),t)a0 — [oN(0, £)F(2(0), t)do

as k - », by dominated convergence. Thus, letting k -« in

(4.3) gives
2(t) = £-N(o,t)F(2(0), t)do.

Corollary 4.1: 1In addition to the assumptions in Theorem 4, as-

sume there exists a bounded measurable function p(t) on {o,T]

V4 in

such that |F(zy,t)-F(zp,t)| < |z;-z,|p(t) for all z,z,

R". Then (4.2) has a unique solution on [0,T].
This corollary follows from Theorem 4 and the use of

standard arguments from the theory of ordinary differential equa-

tions.

Corollary %¥.2: Let n(t,s) be the n X n matrix (see (4.1))

corresponding to df as discussed earlier, so that 17 has the

properties given in Lemma 4,1, Then (for t € I') the system
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Y(t,t) = E
(4.1
Y(o,t) + sz(B,t)nﬁa,o)da =B ty,20<t

has a unique solution Y(o,t) on [to,t] which is of bounded
variation in o. Furthermore, Y(o,t) is continuous in o at

g =t.

Proofs It is sufficient to consider a vector system on a fixed

interval [to,tl], say

y(tl) = el = (1,0,.-.,0)
%
y(o) + [ y(B)n(B,0)dp = e; t, S0 <t

or, in terms of column vectors,

y(tl) = e .
(L4.5) %
y(a) + folnT(B,c)y(ﬁ)dB =e tySt<t.

Define N(o,t) = nT(tl-c,tl-t) and F(z,t) = z. By a simple
transformation we shall see that system (L4.5) is equivalent to
(4.2) with N and F as defined above and £ = e, .
Let 2z be the solution of (L4.2) on [O,tl-to] for this
N,F, and §=e;. Define y(s) = z(tl-s) for s in [to,tl]. Then

y(tl) =z(0) = ¢ = e,. Also, for t in (O,tl—to] we have

z{t) + ng(c,t)z(c)dc = e .



33

Let s = tl-t in this equation. Then

t

z(tl-s) + fol

N(a,tl-s)z(c)do = ey.

Make the substitution B = tl-o in the integral above. We ob-

tain
2(t,-s) - leN(tl-B,tl-s)z(tl-B)da = e,
or, since y(s) = z(tl-s) and N(tl-ﬁ,tl-s) = qT(B,s)’
tl T
y(s) + [ (B,ys)y(B)AB = e

for s in [to,tl).

Since the above transformations are reversible, we have
that y(o) = z(tl-c) is the unique solution to (4.5).

To show that Y(o,t) is continuous at o = t, we note
that Y(o,t) is bounded in ¢ on [t,,t], say |¥(o,t)] = M.

Then
|¥(6,%)-¥(o, )] = |/ 7(8,)n(B,0)ap)
s [ n(B,0)| ap
s [ (B ap.

It follows that |Y(t,t)-Y(o,t)] -0 as o -t
Note that in addition to continuity at o = t, one also

has that Y(o,t) is continuous from the right in o on [ty,t]



since n(B,-) is right continuous for each B.

We are now able to prove a theorem concerning the repre-
sentation of solutions in terms of adjoint or multiplier variables.
That is, we shall give a type of variation of constants formula

for functional differential equations.

Theorem 5: ILet 1 be as given in (4.1) (x and u fixed). Let
the n-vector functions ¢ and C be given with ¢ € AC([ob,to],Rn)
and C e L (t,,t)). For each t in (tg,t1], et I(o,t) be the

matrix solution to

I(t,t) = E
(4.6)
D(o,t) + [IT(B,t)n(B,0)a8 = E t, % 0 <.

Then the n-vector solution 2z to

B(0) = [qdg(o,9)2(s) + Clo) 4y 2o =t
(%.7)
z(a) = (o) % =0 =t
is given for t > to by
t tO
2(t) = I(t,,t)e(t,) + ftor(a,t)dBbedsn(s,s)@(s)

(1.8)
: fﬁor(s,t)C(ﬁ)ds.

Proof: As has already been pointed out, the existence of a solu-

tion to (L4.7) is guaranteed by Theorems 1 and 2 in [1]. For
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t > to we have

z(t)

Mtg,t)a(tg) + fﬁo ag (T(B,t)2(B))

T(t,,t)0(t,) + f:odBP(B,t)z(B) + fEOP(B,t)i(B)dB

N%ﬁWWQ+Q%ﬂ&ﬂMm

+ ftOF(B, {fﬁéd n(B,s)z(s) + c(p)}ap

t
D(t,,t)0(t,) + ftOP(B,t)dBfogdsn(B,s)@(s)

1

% ot
+ [¢ T(B,t)C(B)dp + [ a T(B,t)z(B)
t t, B
0 0]
t p
+ [ T(B,t)apfT a_n(B,s)z(s).
t t. s
0 0]
Consider f I‘(B,t)dBfB a n(B,s)z(s) Since 1n(B,s) =0 for s z B,
O
this 1ntegral may be written f F(B,t)dBf d n(B,s)z(s) Under
O O
the conditions which TI',n,z satisfy, it is possible to use a
slight modification of an unsymmetric Fubini type theorem of Cameron

and Martin [3] to interchange the order of integration in this

integral. We obtain

t t
fi (35T T(B0(B, )3 ()

- fﬁoiasf§r<e,t>n<s,s>aa1z<s)

since 1(B,s) =0 for P £ s. We then have



t tO
2(t) = T(t,,t)0(t,) + ftOP(B,t)dBfabdsn(B,s)w(S)
+ [Y T(B,t)c(B)ap
0
+ fzods{l"(s,t) + I50(p,tyn(B, s)aBYa(s).

But the last integral vanishes since TI' satisfies (4.6). This
gives the desired representation.

Let us return now to the general control problem formu-
lated in §2. For (5¥,u*,§¥,ti) optimal, we shall apply the re-

sults of the present section (with x and wu fixed, x = x¥ =

(xp*,§¥) and u = u*) to obtain necessary conditions from Theorem

2.
In (4.1), let 1 = n* correspond to x*,u*. That is,
t
df[x*('):u*(t))t3W] = fa dsn*(t,S)W(S) A
0
where
0
n*(t,s) = . *(t,s) | .
0

Using the notation of §2 and Theorem 5, we get that the elements

of & have the form for t > to

(4.9) &x(t) = P(to,t)ap(to)

ct

%

+f:oI‘(B,t)dBf (B, 5)80(s)

OQ

+ [ (8,8 (o 2((+) uy(B) ) -2(x+( ) u(8) ,B) a8



where & € 3, a¢ Pk, u; € 0, and T satisfies (4.6) with N = n¥.

As in §3, we define multipliers A by

(4.10) - Mo) = blr(a,ta{) t, S0t

where b, #0 is as described in Theorem 2. Then, since T satis-

fies (4.6) with 7 = n*, we have that A satisfies

x(tale) = Dby

t¥

Mo) + [, MB)H(B,0)aB = by £y % 0 <t

Furthermore, A 1is continuous at ti by Corollary 4.2, Hence,
there is an interval (ﬁ,ti] on which A does not vanish., We

also have that
0 - 0 *) = 0 <
A (6) = A (tl) = bl =0

since the first column in n* is zero.

Using (4.9), (4.10), and (4) of Theorem 2 gives

t* t

+ ftik(ﬁ)dﬁfogdsn*(B,S)Em(S)

] K i |
+ ftox(s){qu £(x*(+) ,u;(B),8)-£(x*( ) ,u*(B),B)}dp
£0

k

k
for arbitrary & € 8, ae P, {u.}

N in Q, k arbitrary. Since



N
o

and «, (u.} are independent, this may be written

) s {uy P ’
i

(4.11) ft MBY) (£(x*( ), u(B),B) -£(x*(+),ux(B),B)}dp = ©
0

for arbitrary u € @, and

(1.12) o

A t
+ ftik(B)dgf odsﬂ*(B,S)&p(S) <o

%
for arbitrary &p ¢ d0.
Since -% is in 80 whenever & is, (4.12) may be

written

(b, + Mt,)) -8 (ty)
(4.13) tx t,
+ [ (B)a8S Ca_nx(8,s)8p(s) = 0
0 0
for arbitrary o&p ¢ 39,
Interchanging the order of integration (which again is

possible by an unsymmetric Fubini theorem ), we can write (4.13)

as

(g + Mty +E(t)
(L4.1h) t, t;
+ fabtdsftox(s)n*(s,s)dﬁ}E@(s) =0
for arbitrary &p € 39.

Defining the n-vector function H by



39
,t{ _
(4.15) H(s) = [, "MB)n*(B,s)dB a, £ s = ¢,
0
. . .th
and taking & with Jj  component equal 1, all other camponents

zero in (U4.14) yields

J J j J _
by + A(%,) + HJ(to) - B(q,) = 0.
Hence
(4. 16) bo + x(to) + H(to) - H(ao) =0
or
Y
= - - T ¥
Combining the results of the above discussions with Theorem

2 gives:

Theorem 6: Let (5*,u*,§¥,ti) be optimal for the control problem

with the general functional system equations. Suppose that ti
is a regular point of f(X*(-),u*(t),t). Then there exists a non-
trivial n-vector function A(t) = (xp(t),X(t)) of bounded variation

on [to,ti], continuous at tj, satisfying:
(i) xp(t) = constant = 0, X(ti) % O'

: % S . ‘ :
M) + ftlx(a)ﬁ*(s,t)dfs = 'X(tai) ty 5t < tf.

¥ t3
(1) Jy ME)E(x*( ), ux(t),t)at 2 ftok(t)f(X*('),u(t),t)dt
0

for all u € Q.



(iii) The 2n-1 vector

) t
(-X(t) + [,

pk

MB) (*(B,0)-T*(B, £,)1dB, R(t%),-M( %) - £¥(%))

(@)

\

is orthogonal to 7 at (E*(to),§¥(ti),ti).
Let us make a few observations about this theorem. Re-

turn now to equations (4,13) and (L4.14). We consider two cases:

Case 1: Suppose the matrix function n*(t,s) is such that
dsn*(t,s) = v¥(t,s)ds on [Ob’to]' That is, n*(t,s) is A.C.
in s. Then one can use (4,13) to show (using Lemma 2 of [1] and

arguments similar to those in [1])

by + Mty) =0

and

¥
ft:)'k(ﬁ)v*(ﬁ,s)dﬁ <0 ae. s in [a,t)].

Then (iii) of Theorem 6 would give (-’X(to),'i(ti),—k(t*i)-f*(t*{))
orthogonal to 7.
Case 1 was exactly the situation we had in §3 of this paper.

There we had
d_n*(t,s) = a(s)g (x*(s),u*(t),t)ds
or

#(t,8) = -fta(o)e,(x+(a),w(t),t)do



L3
Case 2: Suppose the function H defined by (L4.15) is such that

dH(s) = h(s)ds on [ab,to]. That is, H is A.C. Then (4.1L4) may -

be written
(b, + Mt)]-an(t,)
t0
+-fa h(s)&p(s)ds =0
0

for arbitrary & € 3. One can then show that this implies

h(s) =0 a.e. on [ay,t,], and, hence
b, + x(to) = H(ab)-H(to) = 0.

Again (iii) of Theorem 6 would take the form stated in Case 1 above.

Case 2 includes the case when the functional is a func-
tional involving only lags (see the discussion below).

Let us point out that i§ is not difficult to show Case 1
implies Case 2. However, the converse is not true as will be seen
in the case of lag problems,

" We mention briefly a few special types of functionals £
thét are inecluded in the above formulation. First, let us coﬁsider
the case where the functional dependence is in terms of lags,

This type of system has been considered in detail in [1]. We just
remark here that fhe results of Theorem 6 agree with those pre-
vious results. For simplicity let f depend on a single constant
lag. That is, take f = T(x(t),x(t-6),u(t),t) where T =

%Kx,y,u,t) is a mapping of B xR X % xI' into R°. Then



b2

1*(t,s) has the form

0 s2t.
n*(t,s) = -'E;(t) $-6 £ s <t

-f;(t)-f;(t) s < t-9,

where T*(t) = %(x*(t),x*(t-é),u*(t),t). Note that in this case
*(t,s) is not A.C. in s. However (see 4,15)
% t%
H(s) = -f oMBYEX(B)ep - ft;x(s)%';;(s)da,
so that Case 2 above holds while Case 1 does not.

For this type of problem, the multipliers are usually
given as A.C. functions satisfying a set of advanced differential-
difference equations, These advanced equations are just the dif-
ferentiated form of the equations for A given in (i) of Theorem
6. 1In the case of lags, one can show that the multipliers A of
Theorer 6 are actually A.C. and satisfy the equations in (i) in
differentiated form., Thus the results of Theorem 6 agree with the
known results whenever we deal with a system with lags.

Remerks similar to those above hold for the special sys-
tem discﬁssed in §3 of this paper, so that Iheorem 5 is just a very
special case of Theorem 6.

Finally, for systems given by

%(t) = £(x,,u(t),t)



3

where x  denotes the values x(t+0), ~T S 0 £ 0, we have that

n*(t,s) satisfies
1%(t,s) = q¥(t,t-1) for s S t-r,

Then (4.1) becomes
affx¥,ux(t),t;¥] = ft_Tdsn*(t,s)\b(s).

These systems are included in the general case above»and hence
Theorem 6 holds, where n* has the additional property noted above.

A final observation conéerning a pointwise maximum princi-
ple for the general case should be made. In the case that f(x(:),u,t)
is continuous in all arguments and the mapping U(t) is such that
U(t) = U for t e I', where || is a fixed subset of Rr, then one
can show that (ii) of Theorem 6 implies a Pontryagin type maxi-

mun principle. That is,
M) o f(x*( ) u*(t),t) = sup{A(t) - £(x*(*),u,t) s ue U}

holds almost everywhere on [to,ti].
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